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In a recent numerical studyhys. Rev. 64, 062501(2001)] of a discretized free-energy functional for the
freezing of a hard-sphere fluid, Valera, Pinski, and John&#®J) found unphysical, spurious free-energy
minima. They concluded that free-energy minima obtained in similar previous work on hard spheres using
relatively coarse discretization scales were also numerical artifacts. We show here that this conclusion is
erroneous: the qualitatively unphysical results found by VPJ do not originate from the coarseness of the mesh
but, rather, are themselves artifacts arising from the particular way in which VPJ discretize the direct correla-
tion function. When a more appropriate discretization scheme is used, as in our own earlier work, the results
are physical.
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In a recent numerical studyl] of the freezing of a hard-
sphere fluid using a discretized form of the Ramakrishnan- BAQ=2 {pin(pi/pe) = (pi—po)}
Yussouff(RY) free-energy functiondl2], Valera, Pinski, and '
Johnson(VPJ find certain unphysical, spurious free-energy 1
minima. They attribute the presence of these minima to the ) Z 2 Cij(pi=p)(pj=po), @
coarseness of the mesh size used in the discretization proce-
dure. They then state that the inhomogeneurystalline  where the sums are over all the subcells of the computational
and glassyfree-energy minima obtained in our earlier stud- mesh, p,=pyh3, and Ci; is a suitably defined discretized
ies[3] (see also Refl4]) using relatively coarse mesh sizes form of the direct pair correlation functio@(r) [5] of the
are also “false” and “numerical artifacts that have little to do uniform liquid. For a fluid of hard spheres of diameteand
with real phenomena.” In this Comment, we show that thedimensionless density* =p,0°, an analytic expression for
results on which the claim of VPJ is based are themselve€(r) can be obtained from the Percus-Yeviéky) approxi-
artifacts of the way in which they define the discretized di-mation[5].
rect pair correlation function in the expression for the dis- The key point leading to the unphysical results of VPJ is
cretized RY free-energy functional. Our own res{i8s4] are the specific discretization scheme they used for obtaining
derived using a different scheme that is free of the patholoCij » not the overall scalb. In the calculations of VPXL;; is

gies encountered by VPJ. obtained[1,6] using the “Fourier space” form:

The RY theory expresses the grand potential difference
AQ) between an inhomogeneous state, characterized by the C--=i 2 ”C(q)eiq-(rifrj) )
time-averaged local densip(r), and the uniform liquid of M i

densitypg, as a functional op(r). In numerical, grid-based 5

methodd1,3,4] for finding the minima of the RY free energy whereC(q) is the analytically calculated Fourier transform
functional, a cubic computational cell of volume® with  of the continuum PYC(r) [5], andr; denotes the location of
periodic boundary conditions is divided infg® subcells, theith subcell. The sum ovey in Eq. (2) is restricted to the
each of volumen®, whereh=L/N is the mesh size. In terms ‘first Brillouin zone” of the computational lattice, so that
of the coarse-grained density variablép;}, where p;  |du/<m/h, p=x.y,z. This cutoff has an important effect on
=[,,p(r)dr, v; being the volume contained in théh sub- the results, as will be seen here.

. . o . In Ref. [1], upon minimizingBAQ as given by Eq(1)
cell, the dimensionless grand potential difference for the disg ... ~ . _ :
cretized system has the form [with C;; given by Eq.(2)] with respect t{p;} for different

values ofL and N, minima corresponding to crystalline fcc
states are found ih* is sufficiently large. For relatively
small values oN (N=8 andN=16), BAQ) for the crystal-

* Also at Condensed Matter Theory Unit, Jawaharlal Nehru Centeline state exhibits, as a function bf a single minimum near
for Advanced Scientific Research, Bangalore 560064, India. Eleck~1.5¢0. For largerN, BAQ exhibits, in addition to the
tronic address: cdgupta@physics.iisc.ernet.in physical minimum neak =1.510, a second, “false” mini-
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FIG. 1. Plots ofC;; , the discrete form of the direct pair corre- FIG. 2. Plots of the dimensionless grand potential difference

lation function, as a function af; , the separation between subcells BA() as a function ofL, the size of the cubic unit cell of a fcc
i andj. Results obtained fon* =0.946, h=0.040, N=80, using crystal. Results obtained for* =0.946,N=64, are shown for both

the real-space prescriptidicrossey are compared with those ob- the real-space methodull circles) and the Fourier-space method
tained using the Fourier-space prescriptidots. The results rep-  (solid line) of definingC;; . The dashed line is a polynomial fit to
resented by the crosses identically vanish beyqpw 1.040. the data obtained using the real-space method.

a lattice point of these false minima is almost entirely con- When we repeated the calculations of VPJ with the real-

tained within one subcell. VPJ infer that these spuriousSPaceCi;, we found that the *false” minima found by VPJ
minima occur because the mesh size used cannot resolve tH N=32 andN =64 do not exisif this form for C;; is used.
density distribution around a lattice point of these minima.In Fig. 2, which precisely reflects the figure in Rgt], we
Since h is comparable to or larger than the width of the have shown the results fg#A() as a function ofl. for n*
density distribution around a lattice point of the minima =0.946 andN=64. Our calculation using the Fourier-space
found forN=16 andN=8, they conclude that these minima Cij reproduces the results of VPJ, showing a relatively shal-
(and similar minima obtained in our earlier studies usinglow physical minimum with slightly negativA() nearL
comparable values df) must also be false. =1.51p, and a deeper false minimum nda# 1.435%. The
This conclusion concerning our previous work is in error: data points obtained for the real-spage show slight irregu-
in our calculationg3,4], we used a different prescription for larities at small scales, because the number of subcédls
calculating theC;; appearing in Eq(1). We obtained this which C;; is nonzero for a fixed varies ad. is cha_nged at
guantity in coordinate space using the expression fixed N. The large-scale behavior gfA() as a function oL
is, however, quite clear, as shown by the dashed line that
1 represents a smooth polynomial fit to the data points. There
C'i:_eJ drlJ dr,C(|ry—ry)), (3) is only one minimum, neat =1.50 with BAQ close to
h®Jo; vj zero. The density distribution at this minimum is very similar
to that at the physical minimum obtained using the Fourier-
wherev; represents the volume contained in the subgell spaceC;;. The “false” minimum nearL=1.435% is not
andC(r) is the analytical PY expression. In Fig. 1, we com- found in our calculationWe do not find any crystalline state
pare theC;; calculated from Eq(2) with that obtained from  for L<1.43% . Since the conclusion of VPJ about the un-
the real-space prescription, E@). The data shown are for physical nature of the minima obtained for coarse mesh sizes
n*=0.946,L=3.20, andN=80 (h=0.040). The scatter of is based entirely on the existence of the “false” minima for
the data points arises because¢ is not uniquely determined N=32 andN=64, the nonexistence of such minima for our
by the separation;;=|r;—r;| between subcellsandj. Only  real-spaceC;; invalidates their argument about the nature of
the data fom;j= o are shown because the values®f ob-  the minima obtained in our earlier work.
tained from the two methods are quite similar for smaller  Using the real-spac€;;, we find qualitatively similar
values ofr;; . Cj; remains nonzero for a small region beyond behavior for smaller values ®: for N= 16, we find a mini-
rij=o because the distance between a point in sub@id  mum with BAQ=—0.5 nearL=1.51s, and no crystalline
a point in subcelf may be less thaor even if the distance state forL <1.506r, and forL=8, a minimum with3AQ
between the centers of the two subcells exceedshe real- =—1.9 is found neat. =1.545%, and no crystalline state is
spaceC;; is always less than or equal to zero, correctly re-found forL <1.538. Thus, the qualitative results are similar
flecting that the exact PYXC(r) is bounded from above by to those at largeN. In some of our calculationf3,4], we
zero[5]. On the other hand, th€;; obtained from Eq(2)  used an approximation in whic@;; is set to zero ifr;; is
exhibits damped oscillations beyong = o, taking positive  greater than a cutoff,=oc. The irregularity in the depen-
valuesin a region of width~h. These oscillations arise from dence ofBAQ on L increases when a cutoff~ o is used.
the use of a finite number of Fourier components to approxiHowever, we do not find any change in thealitative be-
mate the PYC(r), which is discontinuous at=o¢. Since the  havior asN is varied in the range 8 N<64. These results
PY C(r) is strictly nonpositive, the positive values @; contradict the conclusion of VPJ about the unphysical nature
found in the Fourier-space construction are artifacts of thisf the minima obtained for relatively smail.
way of definingC;; . The results shown in Fig. 1 provide an understanding of
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the origin of the false minima found by VPJ fof=64 and  spaceC;j;, which is never positive, is used.

N=32. ForN=64, the spurious minimum occurs nelar Thus, our results show that VPJ's conclusion about the
=1.435, when the spacing between two nearest-neighbotoarseness of the mesh being responsible for the occurrence
lattice points isL/\2=1.014%. The observed behavior of of the “false” minima is erroneous. Rather, the positive val-
the Fourier-spac€;; for rj;= o suggests that for this system ues ofC;;, which are artifacts of the Fourier-space method
Ci;>0 if the subcells andj represent two neighboring lat- for calculating this quantity, are at the origin of these spuri-
tice points. Indeed, we have found that the valueCgffor ous minima. These artifacts disappear when a more appro-
such pairs of subcells is close to 1.44 for=1.43%, N priate method, developed in our earlier work, is used to de-
=64 atn* =0.946. Since the values pf andp; are close to fine C;;. We do not claim that the results of calculations
unity for such subcells, the contribution to the second term irusing coarse mesh sizes ageantitatively as accurate as
Eqg. (1) from such pairs of subcells is negative and relativelythose obtained with finer meshes. Our studies of glassy states
large in magnitude. This, we believe, is the reason for thevere carried out, for practical reasons, using relatively coarse
occurrence of the false minima found by VPJ. This is wellmesh sizes. We believe that the results obtained in these stud-
supported by the absence of spurious minima when the realles are qualitatively correct and physical.

[1] M. Valera, F.J. Pinski, and D.D. Johnson, Phys. Re\64: [4] C. Dasgupta, Europhys. Le®0, 131 (1992.

062501(2001). [5] J.P. Hansen and I.R. McDonald@heory of Simple Liquids
[2] T.V. Ramakrishnan and M. Yussouff, Phys. RevlB 2775 (Academic, London, 1996see Eq(5.5.5, p. 121.

(1979. [6] M. Valera, R.F. Bielby, F.J. Pinski, and D.D. Johnson, J. Chem.
[3] C. Dasgupta and O.T. Valls, Phys. Rev6E 3648(2000, and Phys.115 5213(2001)).

references therein.

063501-3



