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Comment on ‘‘Classical density functional theory of freezing in simple fluids:
Numerically induced false solutions’’
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In a recent numerical study@Phys. Rev. E64, 062501~2001!# of a discretized free-energy functional for the
freezing of a hard-sphere fluid, Valera, Pinski, and Johnson~VPJ! found unphysical, spurious free-energy
minima. They concluded that free-energy minima obtained in similar previous work on hard spheres using
relatively coarse discretization scales were also numerical artifacts. We show here that this conclusion is
erroneous: the qualitatively unphysical results found by VPJ do not originate from the coarseness of the mesh
but, rather, are themselves artifacts arising from the particular way in which VPJ discretize the direct correla-
tion function. When a more appropriate discretization scheme is used, as in our own earlier work, the results
are physical.
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In a recent numerical study@1# of the freezing of a hard-
sphere fluid using a discretized form of the Ramakrishn
Yussouff~RY! free-energy functional@2#, Valera, Pinski, and
Johnson~VPJ! find certain unphysical, spurious free-ener
minima. They attribute the presence of these minima to
coarseness of the mesh size used in the discretization p
dure. They then state that the inhomogeneous~crystalline
and glassy! free-energy minima obtained in our earlier stu
ies @3# ~see also Ref.@4#! using relatively coarse mesh size
are also ‘‘false’’ and ‘‘numerical artifacts that have little to d
with real phenomena.’’ In this Comment, we show that t
results on which the claim of VPJ is based are themse
artifacts of the way in which they define the discretized
rect pair correlation function in the expression for the d
cretized RY free-energy functional. Our own results@3,4# are
derived using a different scheme that is free of the patho
gies encountered by VPJ.

The RY theory expresses the grand potential differe
DV between an inhomogeneous state, characterized by
time-averaged local densityr(r ), and the uniform liquid of
densityr0, as a functional ofr(r ). In numerical, grid-based
methods@1,3,4# for finding the minima of the RY free energ
functional, a cubic computational cell of volumeL3 with
periodic boundary conditions is divided intoN3 subcells,
each of volumeh3, whereh[L/N is the mesh size. In term
of the coarse-grained density variables$r i%, where r i

[*v i
r(r )dr , v i being the volume contained in thei th sub-

cell, the dimensionless grand potential difference for the d
cretized system has the form
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$r i ln~r i /r,!2~r i2r,!%
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(
j

Ci j ~r i2r,!~r j2r,!, ~1!

where the sums are over all the subcells of the computatio
mesh,r,[r0h3, and Ci j is a suitably defined discretize
form of the direct pair correlation functionC(r ) @5# of the
uniform liquid. For a fluid of hard spheres of diameters and
dimensionless densityn* [r0s3, an analytic expression fo
C(r ) can be obtained from the Percus-Yevick~PY! approxi-
mation @5#.

The key point leading to the unphysical results of VPJ
the specific discretization scheme they used for obtain
Ci j , not the overall scaleh. In the calculations of VPJ,Ci j is
obtained@1,6# using the ‘‘Fourier space’’ form:

Ci j 5
1

L3 (
q

C̃~q!eiq•(r i2r j ), ~2!

whereC̃(q) is the analytically calculated Fourier transfor
of the continuum PYC(r ) @5#, andr i denotes the location o
the i th subcell. The sum overq in Eq. ~2! is restricted to the
‘‘first Brillouin zone’’ of the computational lattice, so tha
uqmu<p/h, m5x,y,z. This cutoff has an important effect o
the results, as will be seen here.

In Ref. @1#, upon minimizingbDV as given by Eq.~1!
@with Ci j given by Eq.~2!# with respect to$r i% for different
values ofL and N, minima corresponding to crystalline fc
states are found ifn* is sufficiently large. For relatively
small values ofN (N58 andN516), bDV for the crystal-
line state exhibits, as a function ofL, a single minimum near
L'1.5s. For largerN, bDV exhibits, in addition to the
physical minimum nearL51.51s, a second, ‘‘false’’ mini-
mum at a smaller value ofL. The density distribution around
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a lattice point of these false minima is almost entirely co
tained within one subcell. VPJ infer that these spurio
minima occur because the mesh size used cannot resolv
density distribution around a lattice point of these minim
Since h is comparable to or larger than the width of th
density distribution around a lattice point of the minim
found forN516 andN58, they conclude that these minim
~and similar minima obtained in our earlier studies us
comparable values ofh) must also be false.

This conclusion concerning our previous work is in err
in our calculations@3,4#, we used a different prescription fo
calculating theCi j appearing in Eq.~1!. We obtained this
quantity in coordinate space using the expression

Ci j 5
1

h6Ev i

dr1E
v j

dr2C~ ur12r2u!, ~3!

where v i represents the volume contained in the subcei,
andC(r ) is the analytical PY expression. In Fig. 1, we com
pare theCi j calculated from Eq.~2! with that obtained from
the real-space prescription, Eq.~3!. The data shown are fo
n* 50.946,L53.2s, andN580 (h50.04s). The scatter of
the data points arises becauseCi j is not uniquely determined
by the separationr i j [ur i2r j u between subcellsi andj. Only
the data forr i j >s are shown because the values ofCi j ob-
tained from the two methods are quite similar for smal
values ofr i j . Ci j remains nonzero for a small region beyo
r i j 5s because the distance between a point in subcelli and
a point in subcellj may be less thans even if the distance
between the centers of the two subcells exceedss. The real-
spaceCi j is always less than or equal to zero, correctly
flecting that the exact PYC(r ) is bounded from above by
zero @5#. On the other hand, theCi j obtained from Eq.~2!
exhibits damped oscillations beyondr i j 5s, taking positive
valuesin a region of width'h. These oscillations arise from
the use of a finite number of Fourier components to appro
mate the PYC(r ), which is discontinuous atr 5s. Since the
PY C(r ) is strictly nonpositive, the positive values ofCi j
found in the Fourier-space construction are artifacts of
way of definingCi j .

FIG. 1. Plots ofCi j , the discrete form of the direct pair corre
lation function, as a function ofr i j , the separation between subce
i and j. Results obtained forn* 50.946, h50.04s, N580, using
the real-space prescription~crosses! are compared with those ob
tained using the Fourier-space prescription~dots!. The results rep-
resented by the crosses identically vanish beyondr i j .1.04s.
06350
-
s
the
.

:

r

-

i-

is

When we repeated the calculations of VPJ with the re
spaceCi j , we found that the ‘‘false’’ minima found by VPJ
for N532 andN564 do not existif this form for Ci j is used.
In Fig. 2, which precisely reflects the figure in Ref.@1#, we
have shown the results forbDV as a function ofL for n*
50.946 andN564. Our calculation using the Fourier-spa
Ci j reproduces the results of VPJ, showing a relatively sh
low physical minimum with slightly negativebDV nearL
51.51s, and a deeper false minimum nearL51.435s. The
data points obtained for the real-spaceCi j show slight irregu-
larities at small scales, because the number of subcellsj for
which Ci j is nonzero for a fixedi varies asL is changed at
fixed N. The large-scale behavior ofbDV as a function ofL
is, however, quite clear, as shown by the dashed line
represents a smooth polynomial fit to the data points. Th
is only one minimum, nearL51.5s with bDV close to
zero. The density distribution at this minimum is very simil
to that at the physical minimum obtained using the Fouri
spaceCi j . The ‘‘false’’ minimum nearL51.435s is not
found in our calculation. We do not find any crystalline stat
for L,1.437s. Since the conclusion of VPJ about the u
physical nature of the minima obtained for coarse mesh s
is based entirely on the existence of the ‘‘false’’ minima f
N532 andN564, the nonexistence of such minima for o
real-spaceCi j invalidates their argument about the nature
the minima obtained in our earlier work.

Using the real-spaceCi j , we find qualitatively similar
behavior for smaller values ofN: for N516, we find a mini-
mum with bDV.20.5 nearL51.51s, and no crystalline
state forL,1.506s, and forL58, a minimum withbDV
.21.9 is found nearL51.545s, and no crystalline state is
found forL,1.538s. Thus, the qualitative results are simila
to those at largerN. In some of our calculations@3,4#, we
used an approximation in whichCi j is set to zero ifr i j is
greater than a cutoffr 0>s. The irregularity in the depen
dence ofbDV on L increases when a cutoffr 0's is used.
However, we do not find any change in thequalitative be-
havior asN is varied in the range 8<N<64. These results
contradict the conclusion of VPJ about the unphysical nat
of the minima obtained for relatively smallN.

The results shown in Fig. 1 provide an understanding

FIG. 2. Plots of the dimensionless grand potential differen
bDV as a function ofL, the size of the cubic unit cell of a fcc
crystal. Results obtained forn* 50.946,N564, are shown for both
the real-space method~full circles! and the Fourier-space metho
~solid line! of definingCi j . The dashed line is a polynomial fit to
the data obtained using the real-space method.
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the origin of the false minima found by VPJ forN564 and
N532. For N564, the spurious minimum occurs nearL
51.435s, when the spacing between two nearest-neigh
lattice points isL/A2.1.0147s. The observed behavior o
the Fourier-spaceCi j for r i j *s suggests that for this system
Ci j .0 if the subcellsi and j represent two neighboring lat
tice points. Indeed, we have found that the value ofCi j for
such pairs of subcells is close to 1.44 forL51.435s, N
564 atn* 50.946. Since the values ofr i andr j are close to
unity for such subcells, the contribution to the second term
Eq. ~1! from such pairs of subcells is negative and relativ
large in magnitude. This, we believe, is the reason for
occurrence of the false minima found by VPJ. This is w
supported by the absence of spurious minima when the r
06350
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spaceCi j , which is never positive, is used.
Thus, our results show that VPJ’s conclusion about

coarseness of the mesh being responsible for the occurr
of the ‘‘false’’ minima is erroneous. Rather, the positive va
ues ofCi j , which are artifacts of the Fourier-space meth
for calculating this quantity, are at the origin of these spu
ous minima. These artifacts disappear when a more ap
priate method, developed in our earlier work, is used to
fine Ci j . We do not claim that the results of calculation
using coarse mesh sizes arequantitatively as accurate as
those obtained with finer meshes. Our studies of glassy st
were carried out, for practical reasons, using relatively coa
mesh sizes. We believe that the results obtained in these s
ies are qualitatively correct and physical.
m.
@1# M. Valera, F.J. Pinski, and D.D. Johnson, Phys. Rev. E64,
062501~2001!.

@2# T.V. Ramakrishnan and M. Yussouff, Phys. Rev. B19, 2775
~1979!.

@3# C. Dasgupta and O.T. Valls, Phys. Rev. E62, 3648~2000!, and
references therein.
@4# C. Dasgupta, Europhys. Lett.20, 131 ~1992!.
@5# J.P. Hansen and I.R. McDonald,Theory of Simple Liquids

~Academic, London, 1986!, see Eq.~5.5.5!, p. 121.
@6# M. Valera, R.F. Bielby, F.J. Pinski, and D.D. Johnson, J. Che

Phys.115, 5213~2001!.
1-3


